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INTRODUCTION 
 
This project addressed the FY10 PRMRP 
subject of epilepsy. Increasing incidence of 
traumatic brain injury (TBI) among soldiers 
will likely lead to elevated levels of disability 
due to TBI-related seizures and epilepsy. The 
lack of a reliable biomarker hinders efforts to 
interrupt the evolution of epilepsy from TBI. 
A new, network paradigm for analysis of 
brain imaging data suggests a new direction 
for diagnosing brain injury. Existing analyses 
have neither been applied to epilepsy nor 
have been validated by gold standard data. 
The purpose of this research was to initiate 
exploration of the concept that network 
properties of imaging data within the scope of 
predicting the transition of TBI to epilepsy. 
The specific objectives of this project were to 
develop a fast analysis protocol and validate 
the analysis with gold-standard invasive 
electrophysiology measurements from 
epilepsy patients. The innovative aspects of 
the research are application of a partial 
differential equation framework for fast 
analysis, the application of the network paradigm to epilepsy patients and validation with gold standard invasive measurements. The 
relevance of the project to the FY10 PRMRP topic of epilepsy stems from the potential use of a validated, network paradigm as a 
biomarker of risk for the transition from TBI to epilepsy with the intent of interrupting that transition. 
 
BODY 
 
Research accomplishments are summarized below along the lines of The Statement of Work, which outlined the following main tasks: 

• Develop a partial differential equation (PDE)-based tractography methodology to enable fast, whole-brain measurements of 
connectivity. 

• Validate noninvasive measurements of connectivity by comparison to gold standard, invasive electrophysiology 
measurements. 

• Summarize and publish results. 
 
Develop a partial differential equation (PDE)-based tractography methodology to enable fast, whole-brain measurements of 
connectivity. 
 
A principled theoretical framework for PDE-based tractography was developed and presented at the 2012 IEEE Workshop on 
Mathematical Methods in Biomedical Image Analysis (1) and the 2012 Scientific Meeting of the International Society for Magnetic 
Resonance in Medicine (2). Details of the theory and fast implementation are included in the attached publication (1). Highlights 
include: 

• For the first time, encoding of termination constraints on the PDE tractography within the formalism itself as opposed to ad-
hoc filtering. 

• Acceleration over standard probabilistic tracking by several orders of magnitude from, for example 10 cpu-hours for a single 
track with standard approaches to 2 cpu-seconds with the new approach. 

• The acceleration of the implementation over standard approaches will enable whole-brain tractography. 
 
An important feature of the new approach is that it successfully delineates tracks when standard tractography fails (figure 1). 
 
 
 
Validate noninvasive measurements of connectivity by comparison to gold standard, invasive electrophysiology measurements. 
 

Figure 1. Failure 
of deterministic 
tracking for  
application to 
intracranial 
electrodes. 
Deterministic 
tracks  (pale 
yellow lines, 
indicated by 
arrows) 
originating in 
cortical regions 
(A, B) fail to 
connect the 
cortical regions. 
PDE-generated 
track (red line) 
readily delineates 
connection. 
 



 5

A total of 5 subjects’s imaging and electrophysiologic data were examined. Although we originally proposed examining data from 10 
subjects, electrophysiologic data were incomplete in all but 5. 
 
The overall strategy is to compare measures of anatomical connectivity from tractography with gold standard measures of connectivity 
from electrophysiology. Figure 2 indicates the location of subdural electrodes in one subject. Connectivity is measured by first 
identifying Broca’s area on the grid with a speech arrest task (electrodes 11 and 12 on figure 2). Cortico-cortico evoked potentials 
(CCEP) are measured between these and all other electrodes to identify points of highest connectivity. 
 
The new PDE-based methodology was able to identify connections between any given pair of electrodes in all subjects examined 
(figure 3). A sagittal view of the brain with overlaid tracts derived from the fast PDE methodology is shown in figure 4. The seed point 
for all tracts is in the Broca’s region of the left inferior frontal gyrus. The target points are electrode contact points of subdural grids 
overlaid on the left parietal and temporal lobes. As emphasized by the color coding, the tracts can be grouped into three bundles, which 
correspond to known physiology: the red tracts show the cluster connecting Broca’s region to the presumed Wernike’s region of the 
left temporal-parietal lobes along the superior longitudinal fasciculus, particularly the arcuate fasciculus. The blue tracts fan out across 
the external capsule to connect to the superior and middle temporal gyrus. The green tracts are bundled along portions of the left 
uncinate fasciculus.  

 
Figure 2. Photograph of subdural electrodes (left) and functional maps derived from electrical stimulation (right). 
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Figure 3. Tracks from 8 selected electrodes (red circles) to all other electrodes in subdural grid (terminations of yellow 
lines). 

 
Figure 4. Sagittal view of the brain with overlaid tracts derived from the fast PDE methodology 
 
Correlation with electrode measures of connectivity, however, was modest. Figure 5 shows a two dimensional scatter-plot comparing 
electrophysiological (EP) connectivity vs DWI connectivity, in an epilepsy patient with left-sided subdural grids. Paired electrode 
contacts overlaying Broca’s region in the left inferior frontal gyrus were stimulated using a CCEP protocol (8 mA, 1 Hz, alternating 
unipolar pulse with 0.3 msec duration). Recordings were made over 92 grid contacts placed over the left parietal and temporal lobes. 
Tractography was performed using the fast PDE approach between the Broca’s contact and all remaing electrodes, for a total of 92 
tracts. The connectivity of each track was scored in a measure reflecting tract-density, and these values are scored along the x-axis. 
The y-axis shows the magnitude of the electrophysiological response between 10-20 msec after the stimulus.  A modest correlation is 
seen (r=0.45), many contacts show either a strong EP connectivity with a poor DWI connectivity, or a poor EP connectivity with a 
strong DWI connectivity. Furthermore, the correlation does not achieve statistical significance (p > 0.2). 
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Figure 5. Correlation between Tractography-based and  
electrophysiologic connectivity. 
 
This result, presented at the 2012 scientific meeting of the American Society of Neuroradiology (3), indicates that the link between 
electrophysiologic and anatomical connectivity is not strong. Competing hypotheses for the weak correlation include: 
 

1. Assuming that tractography identifies true axonal connections, electrophysiologic connections may proceed over other, less 
direct routes. 

2. The weak correlation may indicate the limits to reliability of tractography-based delination of axonal connections. 
3. Coregistration of electrode locations to image positions is hampered by brain shift and the absence of post-implantation 

images. 
 
The first two items may be addressed by direct examination of white matter pathways on pathology from surgically resected tissue. In 
this way, it may be possible to independently test if tractography identifies white matter connections. Also, the presence of an 
anatomical connection does not ensure the presence of electrical activity along that pathway. Future work will involve the use of 
functional connectivity measurements (4, 5) to incorporate measurements of activity. The coregistration issue may be addressed by 
taking advantage of newly developed stereotactically implanted electrodes (figure 6) which obviate brain shift and in which electrode 
location can be known to the limit of the accuracy of the stereotactic frame. 
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Summarize and publish results. 
 
Work described here has been presented at 3 international meetings (1-3). Manuscripts are currently in preparation describing the 
theory and implementation of the tractography and of correlation with electrode recordings.  
 
KEY RESEARCH ACCOMPLISHMENTS 

• Development of a theoretical basis for PDE-based tractography. 
• Implementation of the tractography that is fast enough to enable whole-brain tractography. 
• Finding of weak correlation between gold-standard electrode recordings and anatomical connectivity based on tractography. 

 
REPORTABLE OUTCOMES 

• Presentation at 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (1). 
• Presentation at the 2012 Scientific Meeting of the International Society for Magnetic Resonance in Medicine (2).. 
• Presentation at 2012 scientific meeting of the American Society of Neuroradiology (3) 

 
CONCLUSION 
 
We have implemented a methodology for tractography that is fast and able to assess connections throughout the entire brain. This 
methodology promises to enable whole-brain assessment of networks of brain connections. The correspondence between these 
connections and electrophysiologic activity is not simply one-to-one. This limitation may be addressed by including other imaging 
measures, such as functional connectivity, and other ground-truth measurements such as stereotactic recordings and myelin stains of 
ex-vivo tissue.  
 
As a scientific or medical product, the work accomplished represents a step towards totally non-invasive evaluation of the brain at risk 
for epilepsy. Such an evaluation would enable rapid evaluation of pharmacologic interventions and development of new therapies. 
Unfortunately, although victims of traumatic brain injury are at high risk for developing epilepsy, there is no clear-cut way to predict 
or evaluate strategies for treating epileptic seizures. On the near term, surgical intervention for phamacoresistant epilepsy often relies 
on highly invasive electrode monitoring that is an option for only the most highly motivated patients. Progress toward noninvasive 
detection of targets for surgical resection would relieve the burden of suffering among these patients while opening up new treatment 
options. 
 
 

Figure 6. 
Stereotactically 
implanted 
electrodes (A) do 
not lead to brain 
shift found in 
subdural electrodes 
(figure 6) because 
the skull is left 
intact. Location of 
electrodes and also 
be determined to 
high precision after 
implanation (B,C). 
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Abstract 

 

MRI tractography is the only method that noninvasively 

maps neural connections in the brain. Interest in its use 

for diagnosis and treatment of neurological disease is 

growing rapidly. Probabilistic tractography provides 

quantitative measures that can be interpreted as the 

strength or reliability of connections, but Monte Carlo 

implementations can require impractical computation 

times and have difficulty identifying connections between 

distal regions. Here, we develop a generic logical 

framework for probabilistic tractography with minimal 

assumptions that lends itself to solution by standard finite-

difference methods. We demonstrate an implementation 

that outperforms Monte Carlo approaches in terms of 

computation time and identifying distal connections. The 

generality of the logic and the speed of the implementation 

indicate the potential of this approach for real-time 

mapping of whole-brain neural connections. 

 

1. Introduction 

Accurate, noninvasive maps of neural connections in the 

brain have the enormous potential to improve diagnosis 

and treatment of neurological disease. For example, 

neurosurgical treatment for medically refractory epilepsy 

requires identification of regions of abnormal electrical 

activity in the brain for resection. Implanted electrodes 

used for this purpose are limited in size and can therefore 

miss the target while imposing risk from their invasive 

nature. A compelling rationale for tractography is to 

augment or even replace such invasive procedures. By 

providing noninvasive, whole-brain maps of neural 

connections, tractography may be able to identify targets 

for resection that the electrodes miss. 

Unfortunately, tractography in its current state cannot 

provide reliable whole-brain maps for practical use. 

Standard deterministic tractography [1-3] misses many 

known connections [4]. Probabilistic tractography 

identifies additional connections [5] but can require 

computational times that are too long to impact treatment. 

More important, tractography can generate false 

connections. Statistical methods, based on probabilistic 

tractography for filtering these false connections, are 

promising [6, 7] but incur additional computational 

burden.  

In this paper, we develop a generic logical framework 

for widespread tractography that lends itself to a fast 

numerical implementation. By taking into account a 

minimal set of logical conditions, it is possible to use the 

rules of probability theory to construct a solution for the 

density of tracks in every voxel. The solution lends itself 

to fast numerical solution by finite difference methods, 

such as simultaneous over-relaxation or conjugate gradient 

algorithms [8]. We show such implementations offer 

orders-of-magnitude speed advantage over more standard 

Monte Carlo implementations of probabilistic 

tractography, particularly in geometries challenging to the 

latter. 

2. Theory 

Our objective is to count the number of fiber tracks in 

each voxel subject to the conditions that all tracks start in a 

given seed voxel and all terminate in a given target voxel, 

without crossing given boundaries. For example, the 

superior part of the corticospinal tract can be identified by 

generating fiber tracks seeded in the posterior limb of the 

internal capsule and terminating in the motor cortex. Note 

that “tracts” refer to anatomical nerve pathways while 

“tracks” refer to the mathematical curves generated by 

tractography algorithms. 

We begin by defining a quantity that will be shown to be 

equivalent to the desired track count: 

 

φ(j) ≡ “the number of tracks originating in voxel j 

subject to the condition that the tracks reach the target 

voxel before hitting either the seed voxel or boundary 

region.” Note that φ(j) forms a subset of all tracks 

leaving j; that is, of all tracks originating from j, many 

hit the boundary or return to the seed before hitting 

the target. 
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The originating voxel may be set as the seed voxel. 

Furthermore, sets of seed or target voxels can be 

considered instead of individual voxels. For the sake of 

brevity, the condition will be referred to as “reaching the 

target.” 

The assumption that tracks are conserved leads to the 

solution for φ(j). The assumption simply states that tracks 

neither appear nor disappear at any points but the seed, 

target or boundary. A consequence of this assumption is 

that the value of φ(j) is directly related to the value of φ(i) 

at all neighbor voxels, i:  

 


i

ijipj )(),()(           (1) 

 

where p(i,j) is the probability that a track moves from i to 

j, subject to the condition that it reaches the target. If we 

assume that the tractography is a Markov process (has no 

memory), φ(j) is not only the number of tracks that 

originate in j, subject to the conditions, but is also the 

number of tracks in j, the desired quantity. Solving for φ(j) 

will therefore achieve our objective. Achieving the 

solution has two components: the logical task of deriving 

the probabilities, p(i,j), and the numerical task of 

calculating the values of φ(j) once the p(i,j) have been 

derived. 

The logical task of relating p(i,j) hinges on its definition 

as a conditional probability. The condition that tracks 

reach the target can be encoded directly into the 

probabilities: 

)(

)(
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BAp
jip
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where B is the proposition, “track reaches the target” and A 

is the proposition, “track moves from i to j.” We define 

λ(i,j) as the probability of the track moving from i to j and 

r(j) as the probability that a track originating in j reaches 

the target. Assuming the independence of λ(i,j) and r(j), 

the joint probability of the track moving from i to j and 

then proceeding to the target is: 

 

)(),()( jrjiBAp        (3) 

 

while the overall probability of reaching the target from 

the originating voxel, i, is r(i). We therefore find: 

 

)(

)(),(
),(
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jrji
jip


        (4) 

 

Figure 1 diagrams a concrete example illustrating the 

intuition behind equation 4. 

Although the probability, r(j), is distinct from the 

previously defined quantity, φ(j), which is the number of 

tracks in j, we can use a similar conservation argument to 

construct a solution: 

 


j

jrjiir )(),()(         (5) 

The probability that a track originating in i reaches the 

target is the sum of the probabilities that the track moves 

to neighbors j, each multiplied by the probability of tracks 

originating in j reaching the target. This simply uses the 

fact that if i is not the target, any track must pass through 

some neighbor before reaching the target. 

As λ(i,j) indicates the likelihood that a track moves from 

i to j regardless of any other conditions, it is an entirely 

local property. This quantity can be estimated from the 

data. For example, previous work has derived a similar 

quantity by integrating a function of the diffusion tensor 

over a solid angle around a line connecting neighboring 

voxels [9]. Alternatively, integration can be implemented 

over a function that accounts for complex fiber geometries, 

such as the diffusion or fiber orientation distribution 

function (dODF or fODF, respectively) [10, 11]. 

The logical derivation is now complete. From the data, 

we derive the local probability, λ, which, through equation 

5, allows us to derive the probability r. The probabilities p 

follow through equation 4, leading to the desired quantity, 

φ.  

Voxel i Voxel j

1000 tracks 

pass through, of 

which 400 reach 

the target 

Target

250 tracks 250 tracks

250 tracks

A

B

200 tracks eventually 

reach the target

(r(i) = 200/250 = 0.8)

50 tracks eventually hit 

seed or boundary

Boundary

250 tracksSeed

C

Figure 1: Cartoon example showing application of conditional 

probabilities. Consider 1000 tracts originating from voxel i. Of 

these, only a fraction (40% in this example, or r(i) = 0.4) reach 

the target voxel (for example, track “C”), with many tracts 

hitting either the boundary (“B”) or returning to the seed (“A”). 

In this 2-D example, there is a 25% probability for each tract to 

step into one of the four orthogonal directions (λ(i, j) = 0.25 is 

constant). Consider those tracts that step into the adjacent voxel 

j. Of those, 200 reach the target (i.e. r(j) = 200/250 = 0.8). We 

can thus see that the probability for a successful track to reach 

the target from i via j is p(i, j) = 200/400 = (1000 × 0.25 × 

0.8)/(1000 × 0.4) = λ(i, j) × r(j)/r(i). 
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 Equations 1 and 5 are in the form of finite difference 

equations, for which a number of well-established 

numerical approaches exist, and bear similarities to 

numerical solutions to second-order partial differential 

equations, particularly Laplace’s and Poisson’s equations. 

The remaining tasks are to determine boundary conditions 

and choose the numerical approach. The probability, r, is 0 

at the boundary and 1 at the target. To avoid returning to 

the seed, r is set to 0 at the seed. The number of tracks, φ, 

can be set to an arbitrary value at the seed and is set to 0 at 

the boundary. In order to avoid the target acting as a 

source of tracks, φ must be set to 0 at the target. For the 

numerical approach, we applied both a simultaneous over-

relaxation method (e.g. Gauss-Seidel) and a biconjugate 

gradient stabilized method. The latter recasts each finite 

difference equation into a massive, but sparse, matrix 

equation.  

3. Methods 

Solutions were implemented in IDL (ITT Visual 

Information Systems, Boulder, CO) and MATLAB (The 

Mathworks, Natick, MA). Test data sets were used to 

compare this solution with a Monte Carlo probabilistic 

tractography routine [12]. The latter is essentially a 

weighted random walk, in which the probability of 

stepping in a given direction is determined from 

underlying diffusion imaging data. The test data sets 

included numerically synthesized phantoms, a hardware 

phantom from the fibre cup competition [13] and in vivo 

data. The in vivo data was acquired under a protocol 

approved by the Cleveland Clinic Institutional Review 

Board. Whole-brain high angular resolution diffusion 

imaging (2.5 mm isotropic voxels, 61 non-collinear 

diffusion-weighting gradients with b=1000sec/mm
2
 and 7 

b=0 acquisitions) was acquired on a Siemens TIM Trio 

(Siemens Medical Solutions, Erlangen) followed by 

iterative motion correction [14]. For the hardware phantom 

and in vivo data, fODFs were calculated in each voxel by 

spherical deconvolution [10] with user-independent 

optimized regularization [15]. Local hopping probabilities, 

λ, were calculated by integrating over the solid angle of a 

vector connecting each voxel with its 26 neighbors. In the 

numerical phantoms, the probabilities were set directly. 

For each test data set, the solution was also found 

assuming isotropic probabilities. 

 

Figure 2: Track densities calculated by Monte Carlo (left), finite difference approach (center) and difference between the two (right). 

The maximum difference is < 2%, but the finite difference approach was 4 orders of magnitude faster. 

 

 

0

0.2

0.4

0.6

0.8

1

Figure 3: Corrected track densities in the hardware phantom 

using the Monte Carlo (left) and the finite difference approaches 

(center), which required 60 hours and less than 1 second, 

respectively. A fractional anisotropy map (right) is shown for 

reference. 

Figure 4: Corrected track densities calculated by the Monte 

Carlo (left) and finite-difference (right) approaches, overlaid on 

fractional anisotropy maps for anatomical reference. 

 



 

196 

4. Results 

A configuration in which a seed and target are near the 

boundary, such as those found in proximal cortico-cortico 

U-fiber connections, is particularly difficult for the Monte 

Carlo approach, but not for the finite-difference 

implementation. Figure 2 shows an illustration via a 

numerical phantom, a simple 2-dimensional region with 

isotropic probabilities. Seed and target voxels were placed 

near the boundary. Track counts were normalized to the 

value set at the seed, yielding a normalized track density. 

While the Monte Carlo and finite difference approaches 

yielded track densities that differed by no more than 2%, 

the finite difference was faster by four orders of 

magnitude. 

Figure 3 shows results from the fibre cup hardware 

phantom. A simple correction was implemented in order to 

account for chance connections associated with 

probabilistic tractography. Track densities calculated 

assuming isotropic hop probabilities, λ, were subtracted 

from those calculated using probabilities derived from the 

fODF. This correction has been developed more fully in 

the Monte Carlo framework [6]. Although the Monte Carlo 

approach required over 60 hours and the finite difference 

approach required less than 1 second, the latter resulted in 

a smoother map. 

In vivo data is shown in Figure 4. While the Monte 

Carlo approach required 10 hours of computation, the 

finite difference approach required only 2 seconds. The 

huge difference in computation time results partly from the 

difficulty with which the Monte Carlo approach is able to 

determine track densities at regions distal to the seed. 

Much iteration is required by the Monte Carlo method, 

while the finite difference approach converges rapidly and 

at the same rate at proximal and distal sites.   

5. Discussion 

We demonstrate that a minimal set of assumptions and 

logical considerations can lead to a fast solution for 

tractography. Most previous probabilistic approaches [16, 

17] considered only the local probability, λ, of moving 

between neighboring voxels. A Bayesian approach by 

Friman et al. [18] considered conditional probabilities, but 

with more specific conditions associated with the 

trajectory of each track, particularly as influenced by 

boundaries 

A number of issues remain to be resolved. Optimal 

calculation of the local probability may depend on the 

choice of dODF or fODF, of which there are many types 

[19]. Other numerical solutions may yield even greater 

performance benefits. Also, the correction approach using 

subtraction of isotropic track densities is ad-hoc and not as 

well-developed as that derived in the context of Monte 

Carlo approaches [6].  

6. Conclusion 

The proposed method yields results comparable to more 

standard Monte Carlo approaches to probabilistic 

tractography. However, the enormous boost in speed 

suggests the possibility of determining whole-brain 

anatomical connectivity in a clinically relevant amount of 

time. 
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